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1 Billion Price Points Data Analysis

a) Predict Monthly Consumer Price Index (CPI) without
using the BER or PriceStats

In this section we try to predict the monthly CPI using an AR model. We also
find what the best order for our model is.

We start by doing the autoregressive model for varying orders and comparing
their MSEs and the autocorellation plots. After doing the AR model for orders
of 1, 2, 3, and 4, we get the following results, summarized in Table

Order MSE
1 8.254e-06
2 6.437e-06
3 5.692e-06
4 5.697¢-06

Table 1: Mean Squared Error of Autoregressive Models of Varying errors (log
domain)

Additionally, we get the prediction plots shown in Figure through Fig-
ure [Id] in Figure
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(a) Prediction of AR model with order 1 (b) Prediction of AR model with order 2
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(c) Prediction of AR model with order 3 (d) Prediction of AR model with order 4

Figure 1: Prediction of AR model with varying orders

Furthermore, we get the autocorellation plots of the residuals shown in Fig-
ure [2| through Figure



Autocorrelation plot, order = 1
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Figure 2: ACF of residuals of AR model with order 1

Autocorrelation plot, order = 2
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Figure 3: ACF of residuals of AR model with order 2



Autocorrelation plot, order = 3
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Figure 4: ACF of residuals of AR model with order 3

Autocorrelation plot, order = 4
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Figure 5: ACF of residuals of AR model with order 4

Thus, from the ACF plots of the residuals Figure [2] through Figure [5 Fig-
ure[T] as well as Table[I] we conclude that the best order to fit the AR model to



our data is 2, which achieves a mean squared error of .076 (calculated not in log
domain) or 6.437e-06 in log domain. Although the mean squared error is lower
with lag 3 (MSE .068 and 5.692¢-06 in log domain), the ACF plots show that
this overfits to a residual correlation that is not statistically significant. We also
noticed that lag 5 and above give higher MSEs. This improvement is unlikely
to generalize well.

Figure [IB] is shown in more detail in Figure [6}
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Figure 6: Prediction of AR model with order 2

b) Calculating monthly inflation rates form CPI, PriceS-
tats and BER data

In this section, we want to calculate the monthly inflation rates form CPI,
PriceStats and BER data based on the previous section. What we do is use the

formula:
CPIly; — CPIL

CPI,

The same formula is used for the prices, r; = %. Since the BER prices

Rate of Inflation =

are yearly rates over the next 10 years so we need to change into monthly rates,
according to the formula: 7 = (1+ BER,)™ — 1

By performing the AR model shown above to get the predictions, and them
implementing the formula mentioned, we get the predictions shown in Figure 7]
and Figure
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Figure 7: Inflation up to now and future predictions
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Figure 8: Predicted Inflation Rates

c¢) Using External Regressors

In this section we use external regressors to improve out predictions. The ex-
ternal regressors we use are the PriceStats and the BER data. Also, we use the



first day of each month as a proxy for the last day of the month (at large data
scale these capture the same effect). We compare the results of the AR model
for the average of the month and for the first day of the month. We notice that
the first day of the month does better in its mean squared error on unseen data
with a value of 4.838e-06. I use the inflation rates directly since they are the
simplest. Given that BER data is in inflation rate form, it makes more sense
to use the inflation rates directly as predictors rather than back calculate out
values in log space for the BER data.
The plots we get are shown in figures Figure [9] and Figure [I0]
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Figure 9: Monthly Averages, MSE: 6.5402e-06
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Figure 10: First day of each month, MSE: 4.766e-06

We can see that the monthly average version generate a smoother prediction
curve. The actual CPI data has higher variance and the predictions based on
the first day of each month capture this higher variance better.

d) Model Improvements

Below we can see the figures for different MAs and ARs. We see that an MA
of order 4 gives rise to a slightly better forecasting accuracy, although this
seems like it might just be noise. We also see that the model that uses both
the average values and first value of each month results in performance about
average between the two independently, so it is better to leave the averages out.



Figure 12: Average values, MSE: 4.632¢-06
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Figure 13: Both, MSE: 4.935e-06

e) Autocovariance function of X; = W, + W,

Let X; = W; + 0W,;_1, where W; ~ N(0,0?). Then, we have the following:
[ E(Xt) = E(Wt + QWt_l) = E(Wt) + QE(Wt_l) = ( since Wt ~ N(O, 0’2)
o Var(X;) = Var(Wy + 0W,_1) = Var(W,) + Var(0W,_1) = 0% + 0%*0% =

(1 + 6%)0? since Wy ~ N(0,02)

Consider the covariance between X; and X;_;.We have,

E(X; Xi—p) = E[((Wy 4+ OWi—1)(Wi—p + 0Wi_1_4)]
= EWW,_p, + OWW,_p, + OW, Wiy, + 92Wt7hWt717h]

When h = 1, the above expression reduces to E(X;X; 1) = E(OW2 ) =
O(Var(Wy_1) + E(WZ2_,)) = 00?2 since W; ~ N(0,0?).

When h > 2, E(X:X;_p) = 0 since E(W;W;) = 0 for i # j by definition of
independence of W/s.

Therefore, pacr = E‘(,)i;)&:)’l) =73 erg when h = 1 and 0 otherwise.
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When h =0, E(X;X; 1) = BE(X?) = Var(X;) = (1+62%)02.

Also, pacr = E‘(/)Z‘Ti(;(:)’) = 1f92 when h =1 and 0 when h > 2

f)

Let X; = ¢X;_1+ Wy, where Wy ~ N(0,02). To find the covariance E[X; X; 4],
we multiply each side of the model for X;_p, then take expectations. We have:
XiXe—p = 0 Xe1 Xpp + WelXyp
E[X: X n] = E[pXi 1 X¢pn] + EW; X; 4]

EX: X _p]| = El¢pX;_1X_p]

since E[W;] = 0.
Let v, = E[X:X;_p]. Then, the above formula becomes v, = ¢y,—1. By
moving recursively, we obtain v, = ¢"yy. By definition, 7o = Var(X;). We also

have that Var(X;) = ¢?Var(X,_1) + 2. Since, the series is stationary ( that

is Var(X:) = Var(Xi—1)), we get that Var(X;) = 1f12.

Therefore,

0,2

’Yh:¢h1_¢2-

2 The Mauna Lua CO,
a) Linear Model Fit

We used linear regression to fit the data. The estimated parameters were a; =
306.96 and d = 1.52, with an R2 of 97.8%. Below we have printed the predicted
vs observed values, and also the residuals. We can observe that we manage to
capture the general trend, however we can still improve, since there is a pattern
in the residuals and they are not random.

We can see the data and the fit in Figure 77, and the residuals in Figure
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Figure 14: Fit of the data
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Figure 15: Residuals

b) Quadratic Model Fit

Here we fit the data to a quadratic model. We again, used linear regression.
The estimated parameters were ; = 314.30,8; = 0.78 and f3 = 0.0125, with
an R? of 99.3%.

Also, we have plotted the predicted vs observed values, and also the residuals.
We can see that the residuals are much more random than before which means
that fitting is much better.
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We can again see the data and the fit in Figure 77, and the residuals in

Figure
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Figure 16: Fit of the data
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Figure 17: Residuals

c¢) Model Difference

We can see that the second fit is much better, since it follows the observed data
more closely. Additionally, the residuals are much smaller. The R? values also
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show that the second model explains more of the sample variance compared to
the first model.

d) Removing Seasonality

The periodic signal we need to extract is shown in Figure [I8]
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Figure 18: Periodic Signal to be exctracted

e) Variation of CO;
The plot vs the predicted curves are shown in Figure [I9]
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Figure 19: Fit of model

We can see that the predicted values follow the actual data very closely.
Thus, we conclude that the seasonal variation is similar across years, while
there is a clear upward trend in the same season values.
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