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Abstract

Convolutional Neural Networks (CNNs) are a
powerful tool for learning features in various dif-
ferent types of images and have been used in tasks
such as image recognition, object detection and
scene recognition. In this paper, we analyze the
use of CNNs in the task of scene recognition for a
subset of the Places2 dataset consisting of over 10
million images from 400 unique scene categories.
We evaluate the performance of two different ar-
chitectures, AlexNet [I|] and ResNet [4], and at-
tempt to improve their performance with various
embellishments. We obtain an accuracy of above

70%.

1. Introduction

In the past 5 years, there have been many devel-
opments in the use of CNNs in image recognition.
The first demonstration of the success of CNNs
was with AlexNet [[1]. Using their deep convo-
lutional neural network, they were able to win
the 2012 ILSVRC (ImageNet Large-Scale Visual
Recognition Challenge), a very highly-reputed
computer vision challenge. AlexNet not only uti-
lized new techniques such as dropout, local re-
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sponse normalization and data augmentation, but
also led to a focus in the field that established
CNN s to be the leading class of models for im-
age recognition. Figure 1 shows an overview of
AlexNet’s architecture.

The following years, several influential and
highly respected efforts have been made in or-
der to further improve the accuracy of Convolu-
tional Neural Networks. Such networks include
ZFNet [6l], which won the ILSVRC the next year
using a very similar architecture to AlexNet that
was trained for twelve days, and VGGNet [3], that
demonstrated the success of using a deep network
with many layers.

In even more recent times, the boundaries
of image recognition through CNNs have been
pushed even further with architectures such as
GoogleNet [3] and ResNet [4] that use depths
much larger than what had been used before.
GoogleNet was the first to demonstrate that stack-
ing layers sequentially on top of each other was
not the only approach. They used a structure
called an Inception Module, as displayed in Fig-
ure 2, in which various portions of the network
are happening in parallel. This structure allowed
them to utilize very complex and deep architec-
tures while also remaining computationally effi-
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Figure 1. AlexNet architecture. [1]]

cient. The ResNet consisted of a 152 layer net-

Figure 2. The inception module. 3]

work architecture and achieved an error rate as
low as 3.6% on the ImageNet dataset. This net-
work used a structure called a residual block in
which the original input was added to the result
of the block as shown in Figure 3.

identity

Figure 3. A residual block. [4]

In our work, we explored deep convolutional
neural networks for image recognition on the
Mini Places Challenge. The goal of the challenge
was to identify the scene category depicted in a
given photograph. The Mini Places dataset is a

subset of the Places2 Dataset [2], and consists
of 100,000 training images across 100 different
scenes. Due to relatively small size of the train-
ing set, we face challenges with over fitting, while
still being able to accurately predict the scene of
an image.

Our approach will be discussed in further detail
in Section 2, where we will explain our methods
and thought process behind our approach. In Sec-
tion 3 we will describe our experiments and our
results.

1.1. Division of Work

In order to efficiently produce results, we both
worked on all aspects of this project, including re-
search, implementation submission and writeup.
We each had an Amazon Web Services (AWS)
instance virtual server where we tested our the-
ory which was implemented by making changes
in our shared repository code. After each run, we
would assess our models and discuss on further
ideas to bring down the error.

2. Model & Approach

In this section we discuss the methods used to
improve the accuracy of our model in the Mini-
places challenge. More specifically, the three
main goals we had were:

1. Implementing AlexNet
2. Dealing with over-fitting

3. Implementing ResNet



2.1. Implementing AlexNet

Once we set up the AWS instances, and in-
stalled all the necessary dependencies. We
started by implementing a working version of
the AlexNet code offered in the github repository
with the sizes given. That architecture alone gave
us a relatively good accuracy of over 60%.

Just by tweaking the parameters such as:

e Learning Rate n
e Batch Normalization decay and
e Dropout factor

We were able to reach accuracies of around
70%. However, even though we trained the model
for long times, it was hard to go past that value.
We soon realized that our model was over fitting
to the relatively small dataset, as the training ac-
curacy was much higher that our validation accu-
racy.

2.2. Dealing with Over-Fitting

Dealing with over-fitting can be challenging,
especially when working with smaller datasets,
like the one provided.

In order to deal with the over-fitting, we tried
varying the dropout factor and learning rate, but
decided to focus on image augmentation. The im-
age augmentation provided with the code is quite
basic, resulting in pictures that are very similar
to one another. As a consequence it is easy to
over-fit after some amount of training. In order
to go around that problem, we changed the im-
age augmentation part of the DatalLoader python
file. We first tried improving it on our own by
adding more randomizations and more changes,
but quickly decided on going with third party li-
braries. This is why we installed an open-cv de-
pendent library named imgaug. Imgaug has sev-
eral built-in functions that allow a large amount of
image augmentation in order to avoid over-fitting.
We used some of those functions, such as rotat-
ing, cropping, changing the image, adding gaus-

sian noise and changing the color of image. This
helped us reduce our error.

2.3. Implementing ResNet

Even though the strategies discussed above im-
proved our classification accuracy, we were not
able to achieve a very high accuracy with AlexNet
and therefore decided to use the deep, complex
structure of ResNet to get an increase in our per-
formance. We incorporated the ResNet architec-
ture to our dataset. However, due to its very deep
structure, training this network was much slower
compared to AlexNet. Therefore, we were unable
to tweak the parameters enough times to obtain
maximum accuracy.

3. Experiments & Results
3.1. Experimentation Set Up

In order to test our models, we used Ama-
zon Web Services EC2 Instances. We chose the
p2.2xlarge AMIs and installed all the necessary
dependencies which include:

CUDA 8.0

CudNN 6
python3
Tensorflow—gpu
ImgAug

Each one of us would make modifications to our
code shared on a github repository and then run
the modified CNN on their AWS Instance for sev-
eral epochs. We then tested the test-set accuracy
of our model.

Method \ Test Set Top 5 Error ‘
AlexNet Base 0.305
AlexNet Optimized 0.29
AlexNet with Image Augmentation 0.28

Table 1. Results for test set accuracy.
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Figure 4. AlexNet with learning rate = 0.0005 batch
size = 60, decay=0.9, dropout=0.5
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Figure 5. AlexNet with batch size of 75, learning rate
of 0.005, dropout=0.3, decay =0.8
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Figure 6. AlexNet with learning rate = 0.001 batch size
=80, decay=0.9, dropout=0.7
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Figure 7. AlexNet with learning rate = 0.005 batch size
= 100, decay=0.9, dropout=0.4, improved image aug-
mentation

3.2. Discussion

It is obvious from the results that we received
that CNNs can in fact be used to classify image
scenes and environments according to a given set
of scenes. Given a large enough data set and com-
puting power, training neural network architec-
tures can be a simple process that can then classify
all sorts of images.

In our work it was obvious how architectures
like AlexNet can be used in such circumstances,
but unfortunately, due to factors such as lim-
ited computing power and time, we didn’t have
time to fully explore and optimize the parame-
ters of deeper architecture, such as ResNet and
GoogleNet. The research we examined sug-
gests that for this type of model architectures like
ResNet should perform better, but we never ex-
ceeded our AlexNet accuracy.
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