
Optical Character Recognition using Convolution Neural Networks
MIT 6.819 Final Project Fall 2017

Ekin Karasan
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

ekarasan@mit.edu

Dimitris Koutentakis
Massachusetts Institute of Technology

77 Massachusetts Avenue
Cambridge, MA 02139

dkout@mit.edu

Abstract

Optical Character Recognition is a very important task
for automatic data entry, making scanned text researchable,
and ease of access. In this report we analyze the implemen-
tation of a simple Optical Character Recognition (OCR)
algorithm using Convolutional Neural Networks (CNNs).
CNNs are a powerful tool for learning features in various
different types of images and have been used in tasks such
as image recognition, object detection and scene recogni-
tion. We evaluate the performance of our implementations
and discuss modifications and improvements that help the
accuracy of OCR.

1. Introduction
As the use of computers and automated data analysis in-

creases, there is an increasing need to convert images of text
into machine-encoded text. More and more people want to
keep a digital archive of their documents, convert old docu-
ments to searchable text, and perform data analysis on doc-
uments. For these reasons, it is very useful to be able to
convert printed text into digital computer documents.

Optical Character Recognition (OCR) is a process by
which handwritten or printed text is converted to a format
which is understandable by machines. In this paper, we im-
plement an OCR algorithm that heavily relies on Convolu-
tional Neural Networks. OCR algorithms can be extremely
complex, especially to achieve high accuracy with hand-
written texts. We implement a simplified OCR algorithm
aimed to achieve high accuracy in converting printed text
that satisfies certain assumptions.

2. Related Work
Various architectures for OCR have previously been de-

veloped and are used widely. One example is the open-

source engine developed by Google called Tesseract [6].
As in most OCR architectures, Tesseract starts by prepro-
cessing the image firstly by doing a connected component
analysis, in which outlines of the components are deter-
mined. These outlines are gathered together to form ob-
jects called Blobs and broken into different words. This
method of preprocessing is very accurate, however, also
very computationally expensive. Once the text is broken
down into different words, the words are recognized us-
ing a two-pass adaptive recognition process. In the first
pass, the algorithm attempts to recognize each of the words.
Each word that is classified correctly is then added to
the training set to improve the accuracy. In the second
pass, the words that are not classified well are re-classified.
Cuneiform [5] is another one of the earlier OCR architec-
tures developed which also incorporates adaptive character
recognition, similar to Tesseract. Many newer OCR soft-
ware are able to achieve much higher accuracy compared to
Cuneiform, however, have significantly more complex ar-
chitectures. Some of these software include OCRopus [2],
Abbyy [3] and Ocrad [4].

In the past 5 years, the success of CNNs in object recog-
nition have been demonstrated many times. One example
of this demonstration is AlexNet [1]. Using their deep con-
volutional neural network, they were able to win the 2012
ILSVRC (ImageNet Large-Scale Visual Recognition Chal-
lenge), a very highly-reputed computer vision challenge.
AlexNet not only utilized new techniques such as dropout,
local response normalization and data augmentation, but
also led to a focus in the field that established CNNs to be
the leading class of models for image recognition. Figure 1
shows an overview of AlexNet’s architecture.

We will explore using a modified version of the Alexnet
architecture for character recognition, combined with our
algorithm for preprocessing which will be described in the
following section.

1



Figure 1. AlexNet architecture. [1]

3. Approach
We will start this section by giving an overview of the

problem we wanted to solve, including some of the simpli-
fications and assumptions we made. Afterwards, we will
give a detailed explanation of the two main modules in our
system: the preprocessing module and the character recog-
nition module.

3.1. Problem Space and Assumptions

In this paper, we discuss the implementation of OCR for
a small subset of images. Here are a list of assumptions we
used while defining our problem space:

• Images are of computer generated printed documents.

• Lines in document are horizontal (straight).

• Characters in the same line are of the same size.

• Possible characters include all letters, both uppercase
and lowercase, and numbers.

• Special characters are not included except for period.

3.2. Preprocessing

The input of the preprocessing module was an image of
the text and the outputs were images of each of the letters
extracted from the text.

The first step of preprocessing involved converting the
input image into black and white. Once this was accom-
plished, horizontal lines that only contained white pixels
were identified to separate the text into lines. Each line
was processed in a similar way, identifying vertical columns
with only white pixels, to separate each line into characters.
The coordinates of each character in that line were stored.

Once the coordinates for every character are determined,
spaces between words are identified by comparing the space
between every character to the maximum character width in
that line. If this spacing exceeds a certain threshold, a space

between two words is detected. Periods are also detected
manually, by looking at the ratio of black pixels in a char-
acter and the dimensions of the character.

After spaces and periods are determined, a square image
of the other characters (excluding periods) are created by
padding the image with white pixels. This square image is
then passed onto the character recognition module.

3.3. Character Recognition

The character recognition module takes the square image
of characters as input and determines the characters cor-
responding to the images. The recognition was done on
a character-by-character basis rather than a word-by-word
basis, like the one in Tesseract, because a word-by-word
recognition would require a very large training dataset and
many hours of training. In order to do that we trained a
slightly modified version of the network we used in the
Miniplaces challenge (a variation of the AlexNet), adapting
the network to the OCR task.

The dataset used consisted of images 62 characters (26
uppercase, 26 lowercase and 10 digits) in 1016 different
fonts. 85% of this dataset was used for training and 15%
of this dataset was used for validation. This dataset was
later reduced to 816 different fonts for each of the charac-
ters by eliminating uncommon fonts or fonts that have the
same character for lower and upper case letters.

Our Miniplaces network was trained with the mentioned
training and validation sets. The resulting weights of the
network were used to classify the images of each of the let-
ters. The results of our experiments with the network and
datasets are discussed in Section 4.

3.4. Text Reconstruction

Finally, the algorithm takes the sequence of letters, pe-
riods, lines and spaces specified by the preprocessing stage
and generates text by either writing the letter recognized by
the neural network, a period, a space or a new line. The final
output document is generated and saved in a .txt format.

2



Figure 2. Preprocessing Algorithm Output

Figure 3. Preprocessing Algorithm failure on italicized serif font

Figure 4. Preprocessing Algorithm success on italicized font

4. Experiments & Results

4.1. Preprocessing

The pre-processing algorithm worked very well in al-
most all types of scenarios. As seen in figure 2, the pre-
processing part of our algorithm correctly identifies all the
characters in the image (denoted by the box around them).

However as seen in figure 3, in certain situations, such
as fonts with large serifs, when italicized, the preprocessing
algorithm merged letters close together and thought entire
words were letters. This underlines some of the limitations
of our preprocessing algorithm and is the main reason we
assume that all inputted text is non-italicized even though
the classifier can correctly classify italicized letters.

It seems like the preprocessing algorithm only has a
problem when the italicized fonts are serif fonts as in other
cases it works correctly (such as in figure 4).

4.2. Character Recognition

We tested the accuracy of our system with 4 different
variations of the neural network and datasets. These four
variations can be summarized as follows:

1. The first iteration of our network was trained on the
full dataset with image flips and very little data aug-
mentation.

2. The second iteration of our network was also trained
on the full dataset with the removal of image flips, as
letters always have the same orientation.

3. For the third iteration, we increased the data augmen-
tation and removed uncommon fonts from the dataset
in order to train more closely to more commonly used
fonts.

4. In the fourth iteration we increased the crops and ro-
tations of the image augmentation while reducing blur
and shearing. We also decreased the learning rate and
increased the percentage of the data that is included in
the training set.

Our results can be viewed in tables 1 through 4.

First CNN Accuracy

Font Case-Sensitive
Case-
Insensitive

Calibri 88.93% 96.54%
Times New
Roman 86.85% 91.70%

Candara 77.85% 86.51%

Overall 83.27% 90.00%

Table 1. Results for accuracy of first CNN.

Second CNN Accuracy

Font Case-Sensitive
Case-
Insensitive

Calibri 91.70% 98.62%
Times New
Roman 82.35% 87.54%

Candara 78.55% 86.85%

Overall 84.20% 91.00%

Table 2. Results for accuracy of second CNN.

4.3. Discussion

As we can see from the results included above, each
modification we made resulted in a more robust and better-
performing algorithm. It is also important to note that the
output of the character recognition algorithm depends quite

3



Third CNN Accuracy

Font Case-Sensitive
Case-
Insensitive

Calibri 94.81% 98.26%

Times New
Roman 80.62% 86.85%

Candara 79.58% 87.20%

Overall 85.01% 90.77%

Table 3. Results for accuracy of third CNN.

Fourth CNN Accuracy

Font Case-Sensitive
Case-
Insensitive

Calibri 95.5% 98.96%

Times New
Roman 83.74% 85.58%

Candara 80.62% 87.19%

Overall 86.62% 91.58%

Table 4. Results for accuracy of fourth CNN.

a bit on the font used. For example, fonts that have lower
and uppercase letters that are very similar and/or fonts that
are different than most common fonts (on which our CNN
was trained) will have lower accuracies. In addition, letters
such as uppercase ”i” and lowercase ”L” were easily con-
fused because in sans-serif fonts they look very similar: I,
l. Other examples of characters that got confused were cap-
ital ”o” and the number zero as well as lowercase ”I” and
the number one. One solution to this problem could be to
decide on the letter after looking at its size comparative to
other characters nearby (larger characters are likely to be
capital letters or numbers than smaller characters).

Finally it is interesting to note that even though our al-
gorithm worked with most fonts (even italicized), the pre-
processing algorithm failed as it could not correctly separate
characters. In order to solve this we could use a more com-
putationally intense ”blob detection” algorithm, similar to
that of Tesseract, that looks at all the connected black pixels
in order to separate the documents into letters.

In order to extend this algorithm even more, we could
replace the horizontal line scanning with an algorithm that
finds points in the first line and then performs least-mean-
squares to fit an optimal line and reads the rest of the docu-
ment parallel to that. Furthermore, given more training time
and a large enough MNIST-like handwritten dataset for all
characters, it is very possible to extend the character recog-
nition to handwritten documents. Adding special characters
in our dataset would also allow for recognition of characters
other than letters or digits.

5. Individual Contribution
For this project, I focused on the character recognition.

In specific, I worked on the training of the Neural Network
and the reconstruction of the document. After trying sev-
eral variations of our MiniPlaces CNN, which is based on
the Alexnet architecture, I reached the conclusion that what
works best for this project is a relatively low learning rate
and image augmentation that mostly depends on scaling and
rotations, some cropping, very little blurring and no flips
(since the letters will always face the correct way). I also
found that reducing the dataset a bit in order to not include
very uncommon fonts, fonts that have greek characters, or
fonts that have uppercase characters for lowercase letters
(and vice versa) also helped.

Finally in order to reconstruct the document I used the
output of the forward pass on the trained Convolutional
Neural Netork for each image of a letter that was outputted
from the pre-processing algorithm. This output was then
written that into a .txt document, based on the sequence
of letters, spaces, periods and lines provided from the pre-
processing module.

6. Conclusion
In conclusion, we have demonstrated a robust algorithm

for converting images of text into machine-readable and
searchable documents, using a preprocessing and a charac-
ter recognition stage. We are very satisfied with the overall
results of our algorithm, as we can mostly correctly con-
vert images of documents into text, sometimes exceeding
accuracies of 98%, depending on the font and goal of the
conversion.

Even though the results are satisfactory, there are poten-
tial solutions to the problems we have faced as well as steps
to extend this algorithm to wider use cases, which are de-
tailed in Section 4.3.

References
[1] I. S. A. Krizhevsky and G. E. Hinton. Imagenet classification

with deep convolutional neural networks, 2012.
[2] T. Breuel. The ocropus open source ocr system. Document

Recognition and Retrieval XV, 2008.
[3] http://finereader.abbyy.com/.
[4] http://www.gnu.org/software/ocrad/.
[5] F. Shafait. Document image analysis with ocropus. IEEE 13th

International Multitopic Conference, 2009.
[6] R. Smith. An overview of the tesseract ocr engine, 2007.

4


