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1 Kernel PCA and Locally linear Embedding

1.1
Here we show that ky(z;,z;) := (I — W,)T(I —

W.))i,; is a positive semi-definite kernel. That is we
want to show that k, := (I — W,)T(I —W,,)) is a
positive semi-definite matrix.
For X = {x1,...,xm}, we need:
XTkX >0
XTU-w)"I-W,)X>0 (1)
If we let (I —W,)X = Z, then equation 1 be-

comes:

ZT X Z =22 4224+ 22

m
>0=
XTEX >0.
1.2
Here we prove that the LLE kernel is positive
semidefinite on {z1,---, 2, }. That is, we want to
show that:

XT(A=DI+WS+W,-WIW,)X >0
XTI -M)X >0

However, we know from the finite-dimensional
spectral theorem says that any Hermitian matrix can
be diagonalized by a unitary matrix, and that the
resulting diagonal matrix has only real entries. This
implies that all eigenvalues of a Hermitian matrix A
with dimension n are real, and that A has n linearly
independent eigenvectors.

Thus can write X as X = ajv1 + agva - - - apUp,.
Then, because U;‘ij = 0Vi # j, we get:

XT(A=DI+W+W, -WIW,) X =

m

= Z a?()‘maw - /\i)UiQ
>0

because Aoz > AiVi € [1,m].

1.3

We know that the solutions of PCA have to be the
eigenvalues corresponding to the largest eigenvalues
of the matrix A*I — M. From those, we need to keep
the ones that satisfy the given constraints. Let v; be
an eigenvector of M. Then:

(AT — M)v; = Nv; — Mv; = (A* — \;)v;, so the
eigenvectors of \*I — M are the eigenvectors of M,
with the reverse order.

The two constraints that need to be satisfied are
S Y, =0and 23" YY" = I. The first con-
straint is equivalent to Z:’;l v; = 0 for any eigen-
vector v of M with non-zero eigenvalue. We will
first show that the eigenvectors a2, a?, ..., a%t! sat-
isfy the first constraint. Note here that a3 = e =
(1,1,...,1)T is an eigenvector of M with eigenvalue
0, since Me = (I — W)T(I —W)e = (I - W)T[(I —
We] = 0 using the fact that all rows of I — W have
sum 0.

Let v be an eigenvector of M, Z = I — W
and Z; be the columns of Z. Then, Ao =

Mo@ = 27200 = £ = Z; Y, 2100 =
N = (O Z)(, Z®) = 0, since
Yo Zy = Z?Zl(l — W), = 0. Thus, for \; # 0
it is Y™ o' = 0. This means that the first con-

J=1"J
straint is satisfied if we use the set {a?,a?, ..., a41}
(a! = eis excluded because its eigenvalue is 0 for M).

Next, we need to show that the second constraint
is also satisfied if we use the set {a? a®,... a?t1}.
Let A = (o o a®™1) and define A; to



be the i-th row of A. We want to show that
LS A;AT = T (the eigenvectors are up to the
appropriate scalars). Let N = i S A AT Then:

N = S0y Agdy = S aPal) = ol .
o) = [[k = []], since eigenvectors are orthogonal.
Thus, N = 1.

Since both constraints are satisfied for the set
S ={a? a3, a®1} and o! is not valid, the LLE
embeddings are the set S.

1.4
Let N = (I—=1n)XI=MUI-1,) = I -

LeeT (AT — M)(I — LeeT). Then, Ne = (I —
e")(N*T — M)[(I — --eeT)e] = 0, since the rows
of I — LeeT have sum 0. Also, let v be any other

elgenvector of M. We proved before that e’v = 0,
so Nv = (I — Lee")(\T — M)(I — LeeT)w =
(AT — M)v = (A* — N, so v is also an eigenvector
of N. Thus all eigenvectors of N are the eigenvectors
of M.

Contrary to part 1.3, the eigenvector e has eigen-
value 0 (before it had A*), so it is the last eigenvector
of N. The set {a!,a?, a?} is then the same as
the set S from part 1.3. This means that the con-
straints are satisfied.

1.5

We can think of the LLE kernel as a similarity mea-
sure of the coefficients of the two x’s. We have: k;; =
{M = M}y = —My; = —{(I = W,)"(I = Wa)}ij =
—(e; — Wy,e; — W, ;), where e; — W, ; is the nega-
tive of the contributions of other x’s in x;. Then, the
dot product keeps only the values which are non-zero
in both x; and x;, so it keeps the common neighbors
of the two. A larger product means more common
neighbors, so a larger similarity between the two.

2 Variational Inference for

LDA

2.1
log p(wla, 8 log/Zp z,0,w|a, 8
_ p(z,0,wla, B)
= logEq[W]
p(z7 07 W|a7 /B)
> Eq[log W]

:’ E,[log p(z, 0, w|a, 8)] — Eq4log q(z, 0)] ‘

where for the above we used Jensen’s inequality.
2.2

p(w,z,0|a, 8) = p(w|z, 0, a)p(z|d, o, B)p(0|a, 5)
= p(wlz, B)p(z|0)p(0|cr) =

L :Eq [logp(z, 07 W|a7 6)] - ]Eq [log q(Z7 9)]
=E,[log p(w|z, a, B)] + Ey[log p(z|0)]+  (2)
Eq[log p(6]a)] — Eq[log q(z, 0)]

q(0.2ly,¢) =

q(0)y) Hn 19(2n|én) and v and ¢ are given in L

as a parameter. Thus, we can simplify every term in
Equation (2):
First term:

Next, we know  that

By (o p(wiz. 5)) = [ Zq(z,ﬁlv, &) log p(w|z, 8)d6
/Z 9|V
_Z H q(zn|dn) log p(w|z, ﬂ)/ (6]~)d6

z n=1

-3 H q(2n|¢n) log p(wz, B)

z n=1

=y H q(zn|on) ZIOgP wWnlzn, B)

z n=1

—Z H q Zn|¢n ZIOgﬂn wy

z n=1

_ZZ log Buw,, = H q(zn|dn)

z t=1 n=1

Z Z Zt|¢t IOgﬂzt Phlt)
x> H a(z0|6n)

z\z¢ n=1,n#t

N
Z Z q(2n|@n) log Bz, wn

n=1 zn

N
= Z Z (bn,zn lOg ﬂzn sWn

n=1 zn

q(zn|¢n)log p(w|z, 3)do

®n,i10g Bi,w,

I
M=
Mw
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since [, q(f]v)df =1 and

Zz\Zt Hfj:l’n# q(zn|dn) = 1, by total probability
theorem.

Second term:
Eq[log p(z]0)] = / S 42,01, @) log p(2]0)d6
’ N
- / S (601) T a(znln) loz p(z/6)d0
z n=1
N N
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Third term:

yllozp(0)0)] = [ 3 a(a.0) logp(0la)ip
-/ 5 a0 T atenlon) 0g (0l
= [ atop)ozp(6l0)an S ] o(elon)

z n=1

- / 4(6]) log p(8]a)d#

/ (0]7)(log I'( Zal Zlogl"(ai)

=1
k

+) (i — 1) log 0;)df

i=1

k k
=log F(Z ;) — Z log I'(cv;)
i=1 i=1
k

+ ;(ai -1) /9‘1(9|’Y) log 0;d0
=log r(zk; @) — ilog I'(as)

+ Z(ai — 1)Eq[log 6 |y]
=1log 1“(21 i) — ilog ['(as)

Dl = 1000~ ¥ )

i=1 j=1

Fourth term:

N

Eq[log q(z,0)] = Eq[log g(0]7)] + > Eq[log g(zn|¢n)]

k k:l
Eq[log q(0]7)] =log I (> ) — Z log I'(y:)

=1

+;( i — 1)( Z%

2

ZE [log ¢(zn|Pn)] = /Z z,0) log q(2n|$n)d0
n=1

N
> a0y [ [ alztlee) log a(zn]én)do
t=1

ZHq ko) loga(al6) [ atbl)as

N
1 z t=1
N

N
=Y > I a(zl¢e) log g(zn|én)

N
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n=1 zpn
N
=33 6n-nlogon,-
n=1 zpn
N k
= Z Z ()b’ﬂ,’b log (;bn k3
n=1i=1
Eq[log q(z, 0)]
=logl’ Z%) - ZlogI‘ Vi
k
Z Z’YJ
i=1
N k
DD dnilogdn
n=1i=1
Thus

2.3

We will use Lagrange Multipliers: L(¢,v) = L —
Zﬁle )\n(2§=1 ¢ni — 1). By first order conditions:

oL
W_l()gﬁzu"r\l/ 71 Z’Y] lOng’Ni_l_)‘nzo
= log ¢ni = log fin + V(i) — Z'YJ )—1—-2A



= ¢ni = BiueXp \IJ(”YL Z’VJ - n
= | dni < Biw exp(V Z 7))
2.4
Again:

nzl% »—iww’(im
+ (i = 1)( Z%

) + Y] — (k] ~
—W’(Zm:o:

Z¢m z Z'YJ —0
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N
= 'Yi:ai+z¢ni

3 Topic Modelling

3.1 LDA model training

In this problem, we perform unsupervised learning
on a corpus of news paper articles. We will be per-
forming latent Dirichlet allocation (LDA) using the
Mallet tool. The dataset consists of 19,997 articles
in 20 known categories (e.g. religion, politics etc.).
We implement LDA with 100 topics. The results are
explained in the next section.

3.2 Model topics

The model has learned 100 different topics (topic 0
through topic 99). For each of these topics we have
the top 20 words that characterize the topics. It
is interesting to see how each topic has captured a
different text category. We can see how one of the
categories is characterized by the words describing
its topic. For example, category 13 seems to capture
the topic of medicine, with words: ['the’, ’and’, 'vi-
tamin’, 'who’, 'candida’, ’yeast’, 'this’, 'for’, ’treat-
ment’, ’patients’, "has’, 'medicine’, 'not’, 'medical’,
'with’; "been’, 'weight’, ’symptoms’, ’doctor’, 'can’].

It is interesting to see how, since we are using
more topics than article categories, some of the top-
ics seem really similar. For example, it seems like
also category 84 is related to medicine, with words:
[and’; ’for’, the’, 'medical’, ’with’, ’disease’, ’can-
er’, 'health’, ’patients’, ’aids’, ’pain’, ’this’, 'who’,

"hiv’, 'that’, ’drug’, *treatment’, 'number’, 'were’, 're-
search’].

Furthermore, it is interesting to see that all of the
topics have very highly ranked common words that
provide little to no information. For example almost
all topics have words such as: ['the’, ’and’, ’this’,
"that’, for’, etc.]. This is because these words are re-
ally common in the english language, however there
is little information to be gained. In order to solve
this problem, we can re-train our model, but also
including stop-words, such as the words mentioned
above in order to ignore them in the model training.
Another interesting observation, is that some topics
(e.g. topic 6, 30 & 33), are entirely described by
general words, such as the stop-words we mentioned
above.

Two interesting categories, out of the 20 origi-
nally given, are:

1. Category: ’'comp.sys.mac.hardware’ with top-
ics: [51, 18, 30], where:

e 51: ['the’, ’and’, ’with’, 'monitor’, ’for’,
"apple’, ’this’, 'mhz’; *video’, 'ram’, 'mac’,
"chip’, 'bit’, 'card’, 'simms’, ’cpu’, 'board’,
’has’, 'use’, "pin’]

e 18: ['the’, ’drive’, ’and’, ’disk’, ’with’,
‘hard’,  ’have’, ’system’, ’problem’,
‘drives’, ’'mac’, ’floppy’, ’that’, ’this’,
‘'problems’, ’not’, ’tape’, ’any’, ’for’,
"disks’]

e 30: ["any’, ’for’, "thanks’, "'would’, "have’,
‘anyone’, 'know’, ’please’, ’can’, ’there’,
’this’, ’does’, ’help’, ’but’, 'i'm’, ’could’,
like’, ’some’, "and’, "looking’] and:

2. Category ’talk.politics.mideast’ with topics:
[89, 76, 95], where:

e 89: ['the’, ’israel’, ’and’, ’israeli’, ’for’,
‘that’, ’jews’, 'not’, 'jewish’, 'from’, ’arab’,
‘are’, ’arabs’, ’writes’, ’article’, ’has’,
‘there’, 'peace’, 'were’, ‘they’]

e 76: ['the’, ’and’, ’armenian’, ’turkish’,
’armenians’, ’armenia’, ’‘were’, ’turks’,
‘their’, ’that’, ’for’, ’from’, ’are’;, 'with’,
‘russian’, ’people’, ’azerbaijan’, ’geno-
cide’, ’greek’, 'there’]

e 95: ['the’, ’and’, 'muslims’, ’that’, ’jews’,
‘turkish’, ’genocide’, ’for’, ’all’, ’this’,
'war’, ’nazi’, ’were’, ’nazis’, 'muslim’,
'world’, "people’, 'their’, ’germany’, 'not’]

3.3 Parameter variation

We also tried varying the number of topics when
training the LDA model. In specific, we tried with
number of topics = 75, 50, 25, 15, and 5. We can
see that as the number of topics of the model de-
creases, the more general the topics become. At
around 25 topics, we can see that there is a good



mapping between categories and topics, but below
that, the topics start becoming over-generalized and
full of common words with little meaning and little
information. For example, when training the latent
Dirichlet allocation model on as little as 5 topics, we
got the following five topics:

e Topic 0 with words: ['the’, ’and’, 'that’, 'was’,
‘they’, 'for’, 'were’, "have’, 'not’, 'you’, 'with’,
‘this’, ’from’, ’are’, ’their’, ’people’, ’had’,
'who’, ’there’, ’all’]

e Topic 1 with words: ['the’, ’that’, ’and’, ’you’,
'not’, ’are’, ’this’, 'have’, 'for’, ’but’, ’what’,
'with’, ’your’, ’would’, ’they’, ’one’, ’can’,
‘there’, ’all’, "writes’]

e Topic 2 with words: ['the’, ’and’; ’for’, ’that’,
'you’, ’was’, ’have’, ’but’, ’writes’, ’with’,
'this’, ’they’, ’article’, ’are’, 'not’, ’out’, 'just’,
‘about’, *would’, ’like’]

e Topic 3 with words: [the’, ’and’, ’for’, ’are’,

‘this’, ‘that’, 'will’, 'with’, from’, 'can’, "have’,

'which’, ’has’, ’other’, ’space’, 'would’, ’use’,

'not’, ‘more’, key’]

e Topic 4 with words: ['the’, ’and’, ’for’, ’you’,
'with’, 'this’, ’have’, 'that’, ’are’, ’can’, ’from’,
‘but’, ’'not’, ’any’, ’'use’, ’file’;, ’'will’, ’your’,
‘there’, ‘get’]

4 MovieLens

Experiment Setup

: For this section we will compare multiple methods
that solve the matrix estimation problem. We are
given a dataset (MovieLens) with various ratings of
movies from different users. We split this dataset
into two disjoint sets, a training set and a testing
set. Then we train our model on the training set and
measure its performance by using the testing set. In
order to compare our models objectively, we decided
to introduce two simple baseline models:

In model A (user average), the prediction of the
rating of the pair (user «, movie ) from the testing
data, will be the average rating that user a has given
from the training data.

In model B (movie average), the prediction of the
rating of the pair (user «, movie ) from the testing
data, will be the average rating that movie i was has
given from the training data.

Additionally, throughout this experiment, we are
comparing the models based on two different metrics,
accuracy which is the ratio of the ratings predicted
correctly after rounding and Root Mean Squared

Error (RMSE), which is 4/ Z(QT_y)Q, where a is the

predicted rating and y is the true rating and n is
the number of ratings in the testing set. It shows
quantitatively how far our predictions are from the
ground truth of the testing data.

In general, throughout this experiment for the
movies that we have no data (no users have rated
this movie), we will just predict the average of all
ratings (approx. 3.8).

Our initial results are shown in Table 1.

Accuracy | RMSE
User Average 0.37 1.034
Movie Average 0.379 0.98

Table 1: Initial accuracy and RMSE results

4.1 Singular Value Thresholding

The first approach we used was Singular Value
Thresholding. More specifically, we first scaled the
ratings to change their range from [1 .. 5] to [-1 ..
1], we set all unknown ratings of the matrix to 0 af-
ter the transformation and then we use the Singular
Value Decomposition (SVD) of the matrix as follows:

§ : aa AT
Y = O;U;U;
7

Then there are two ways to predict new ratings.
Both ways involve modifying the vector &, which is
the vector with the singular values of Y.

Hard thresholding sets all values of &; that are
less than our threshold 73 to 0, while soft thresh-
olding sets all values of &; that are less than our
threshold 74 to 0 and reduces the rest of the values
by 7s.

Accuracy and RMSE wrt eta for hard SVT
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Figure 1: Accuracy and RMSE for Singular Value
Thresholding

4.2 Alternative Least Squares

The second approach we used was Alternative Least
Squares (ALS). This method is essentially trying to
approximate our rating matrix Y by using a product
of two low-rank matrices U and V, where U € R™*¥
and V € R¥". Here we expect k to represent k im-
portant features of movies and users that can help
our rating prediction.



We then try to minimize the squared loss ||Y —
UV||%2. The way to minimize this is to alternate be-
tween fixing U and optimizing with respect to V'
and vice versa. The optimizing step can actually
be viewed a normal linear regression and the closed
form formula can be used.

Accuracy and RMSE wrt k for ALS
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Figure 2: Accuracy and and RMSE vs k

4.3 Collaborative Filtering

One approach that can be used to predict the rat-
ings of the users is to define some similarity metric
and aggregate the movie ratings of the k most sim-
ilar users. We define the similarity of users a and b
to be

Y,,V:
sim(a,b) = 7<A ’ ’3>
[ YallIYs]]
where
Y,): =Y, L Y,
( a)j = ta,; — W Z a,l-

leM(a,b)

The method we chose for aggregating the chosen
users was to take a weighted average of the ratings
of the users that have seen the movie. The weights
in our case are the similarities of the users with the
original user. Since the similarities can be negative,
we have to first center the ratings to zero and then
center them back to 3.

Then, for k we chose the values 1, 5, 10, 50, 100,
500 and 1000. The results are shown below:

Accuracy and RMSE vs log k
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Figure 3: Accuracy and route mean squared error
versus log k

We observe that as we choose more similar users,
the accuracy increases and the rmse drops.

4.4 Neural Network for

For this section, we use the keras library in order to
create a neural network that predicts the rating of a
user for a movie. That is, the neural network takes as
input the movie ratings, the user features (id, age,
sex, postcode) and the movie features (id, genres).
We implemented a simple feed forward network.

The network had 3 hidden layers and in the end
it was predicting a real value (between 1..5).

We can see that even though neural networks are
powerful, they performed worse when it comes to this
task. This is because neural networks are very gen-
eral and tend to overfit as seen in our figure below.
For this specific task there are specific solutions to
it. For this one we used MSE due to the fact that
the software we used (keras) supports it.
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Figure 4: Train(blue) and validation(red) Mean
Squared Error

In the end we correctly classified a bit under half
the movies in the test set. That means that our ac-
curacy was almost 50%.



