6.867
Problem Set 1

Dimitrios Koutentakis

September 2018

Classification Error of k-NN, k = 1

1.1 Bayes classifier and error

In the k-NN algorithm with & = 1, we compute the
Bayes Classifier (Y*(z)) and the Bayes error (6*(z)).
We have the feature random variable X which we want
to classify with the label Y € {0,1}. The Bayes Clas-
sifier for this problem will be:

Y (a) LifPY =1X=2)>3
xTr) =
0, otherwise

The corresponding error(6*(x)) will be the probability
that x gets misclassified. Thus:

5 (x) =P(Y * () £Y)
=P(Y*(z) =0Y =1)-P(Y =1|X =)
+PY*(z)=1Y =0)-P(Y =0|X =x)
=P(Y"(z) = 0]y =)77 (z)
+PY(2) = 1Y = 0)no(z)

_ {7717 if 770(35) >

no, if mi(z) >
= min(n,n2)

N[N[

= §* ()

1.2 VC dimension

The VC dimension of the 1-NN algorithm will be in-
finity. That is because for any given number of points,
we can have just as many classes, i.e. for any training
set we can achieve an training error of zero. That is to
say that the algorithm can assign each point to its own
class. Then 1-NN will be able to shatter the whole set
of the points up to infinity.

Since the VC-dimension is infinity, we are at a great
risk of overfitting to the training data. Since the gen-
eralization error is the testing error minus the training
error and the training error is zero, the generalization
error is the testing error. It is easy to construct many

adversarial test sets, all points of which will be mis-
classified. Thus the testing error (and hence the gen-
eralization error) is unbounded.

1.3 Error proof

P(X; —z|>p)=1—P
=1-P

[Xj —x[< P)

(
(x—B<X <z +p)

—1-Pa—-B<X;<z+pBY =0)P(Y =
—Pz—B<X;<z+BlY =1)P(Y =

z+0

=1 —/ Jo@)PY =0)+ f1(t)P(Y
z—p
z+03

<1 —/ YP(Y =0) +~P(Y = 1)dt
z—f

<1-28y

Thus:
=11 P 2> 9)

j=1

:j:

(1—287)

I
-

T .

<(1—26y)"

Since: 0 < 1 — 28~ < 1, the limit becomes:

lim P(mln\X —z| > p) =

n—oo

Jim (1 —267)
=0

1.4 Misclassification limits

Here we have:

0)
1)

1)dt

PY #Yinn(2)|X =12) =

b
— [PY@ £V =)

x P(min [X; —a| = |r - ¢|)d¢

b
:/a (PO (@) =1,Y(€) = 0}X =)

Y(2) = 0,Y() =1|X =2))

Additionally:

b
10X () = / P(Y(x) = 0]X =€)

X P(lglgn | X — x| = |z —¢])d§

In the case where n — oo, we showed that the prob-
ability of x not being seen tends to zero. Thus, for
£ # x, lim,, oo P(mini<j<p, | X; —2| = |z —£&[) =0. In
the case where £ = x: we have:

UO(Xn’(z)) :P(Y = O‘X = LL')P(I111<1I1 ‘Xj — T = 0)

=10 (z)

Similarly, we have:

M (X (@) = m(x)

1.5 Limit of infinite samples

From (d), we want to find the asymptotic behavior of:
P(Y # Yinn(z)|X = x). When lim,, the integral
evaluates to 0 everywhere except where £ = z. Then:

lim P(min |X; —z|=|z—¢|) =

n—oo ‘1<j<n

= 2 (z)no(x)

= 2min{n (), no(z)}(1 — min{n (), no(z)})
< 2minn (x), no(z)

=d"(x)

Logistic regression

2.1 VC-Dimension

Here we calculate the VC-dimension of the logistic re-
gression classifier. In particular, we prove that the
VC-dimension of logistic regression is > d. Then,
we will prove that the logistic regression has a VC-
dimension of < d, where d is the dimension of our
data (1,29, ...,z4 € R?).

2.1.1

Let us start by taking d points in R?. Then we can
prove that logistic regression can always shatter the
set.

Let the points x1, xa, ..., x4 be linearly independent.
Also, let z be the matrix with dimensions d X d contain-
ing our points and Y is a row vector with the labels
of our points. Then, a classifier can shatter them if
we can find a w with dimensions d x 1 for any of the
possible labels of the points that can occur in Y such
that:

w'X =Y

=uw =YX!

Since our points are linearly independent, the ma-
trix X will have to be non-singular. In that case,
X! exists and hence VY we can find such w” (hy-
perplane) that shatters the points. Thus the logistic
regression classifier will have a VC-dimension larger
or equal to d, where d is the dimension of our data
(71,22, ...,zq € RY).

2.1.2

Let us now choose d + 1 points in R, such that none
of them is the zero-vector. Then, since we have more
points than dimensions, and a; are real numbers, and
a1 X ag X ... X ag # 0, we will have:

a1T1 + a2 + asrs + ... + agrq + agr12441 =0

We then assign the labels of the point z; based on
the sign of its coefficient a; (if it is non-zero). Let us
also assume that there exists a w matrix of dimensions
dx1 such that wz; = sign(a;), if a; # 0 and random
if a; = 0. Then, we have:

T T T T T
1w T1taw” Totazw” r3+...+aqW° Tg+ag41W Ta41

Every term above is either a zero or positive, since
wlz; = sign(a;) = a;wTxz; >0, if a; # 0, or the term
is zero by a; = 0. Then, in order for the equality to
hold, all the terms will have to be equal to zero. How-
ever it is the case that not all a; can be zero. If the
classifier shatters the points, then w”z; # 0i. This
cannot be true and we hence have that our linear clas-
sifier cannot successfully shatter these d + 1 points.

2.2 Linearly separable Logistic Regres-
sion

In order to classify data points, the logistic regression
uses the sigmoid function:

1
T, _ - -
U(w x wO) 1 I e_(wa_;'_wO)

Using the sigmoid function, a point is correctly clas-
sified if the sign of w”x is the correct sign (meaning
positive sign for y; = 1, negative otherwise. The mag-
nitude of this result changes the ”sharpness” of the
function (how steep it is) and it expresses the confi-
dence of the classifier in the prediction. We assumed
that our training data is linearly separable, ie Va;3w,
such that w” z; has the correct sign. Now, if we scale w
to aw, with a > 1, we will still obtain the same signs,
but with a greater magnitude and hence a greater con-
fidence.

If we scale w by «, and use aw in our L(w) equa-
tion, given that w correctly classifies our data, we can
see that L(aw) < L(w), if @ < 1. It is thus obvious
that we want a values of w as large as possible.

In Figure 1, we can see how the sigmoid func-
tion changes for different values of w in the 1D case.
Here we have used a values of: w = {1,5,10,50} and

an offset wy = —2. Our sigmoid function thus is:
T _ 1
O’(w Xr — 2) == m~
w=1 w=135
10
10
oe 08
06 a6
04 a4
a2 02
o o
-4 2 a 2 4 -4 2 2 4
w=10 w =50
10 10
o8 o8
06 06
04 04

a2 a2

oo o
-4 -2 a 2 4 -4 -2 o 2 4

Figure 1: Sigmoid functions for varying w

2.3 Least Squared “Logistic Regres-
sion”

2.3.1

The squared loss function for the Logistic Regression
is:

[\

lz i —o(wlx;))?

In order to find the gradient descent step for min-
imizing the squared loss function, we need to differ-
entiate in order to get the gradient of the function
(VL(w)). Thus we get:

m

VL(w) = =Y (yi — o(w) (o(w"z:)(1 - o(w"w;))z;

=1

Then the gradient descent step for minimizing
squared loss is:

L—w +az

2.3.2

—o(whz) (o(wlz) (1 — o(w”

John’s overall approach to find the parameters w by
performing gradient descent on the quared loss func-
tion of the Logistic Regression is not a good one. In
particular, it is not guaranteed that this loss func-
tion will be globally non-increasing. That means that
the function might have one (or several) local min-
ima which cause the gradient descent optimizer to get
stuck.

One such example is constructed with the points:
X = {2,-10,20,-4,0,3,—-7,—-100} and Y =
{1,1,0,1,1,1,1,0}. These numbers result in a Logistic
Regression model with the squared loss function shown
in Figure 2:

i)

Figure 2: Loss function of our Logistic Regression
model

The squared loss function in Figure 2 is not easy to
minimize with normal gradient descent, because there
are multiple local optima, different than the global

minimum. Thus the optimizer might converge some-
where that is not the actual solution.

Support Vector Machine

(SVM)
3.1 Implementing the dual form of lin-
ear SVMs with slack variable

The dual form of the linear SVM consists of the objec-
tive: 1
min i(qux) + Pz

And the constraints:

GA<h
TA=0

When applying our dual form of a linear SVM to
the data set: X,Y, with:

2 2 +1
12 3 R
X=1lo0 -1 Y=1,
-3 -2 -1

We get the following matrices:

8 10 2 10 1
10 13 3 12 1
P=19 3 1 2 1= | 1
10 12 2 13 1
1 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 -1 0 0 0
=10 o 1 o h=1,
0 0 -1 0 0
0 0 0 1 1
0 0 0 -1 0
A=(1 1 -1 -1) b= (0)

The support vectors are (2,2) and (0, —1).

3.2 Testing SVm on 2D dataset

Testing the implementation of the linear SVM on the
training and validation data of the four datasets, we
get the following error rates, summarized in Table 1:

Data Set | Train Error Rate | Validation Error Rate
Data 1 0.0 0.0
Data 2 0.1775 0.18
Data 3 0.02 0.03

Table 1: Error Rates for Linear SVM

The classifications, along with the boundary and
the margins (as well as the error rates) are shown in
Figure 3.

Train1: error = 0.0 Validate1: error = 0.0

§

Voo —— o _M’___/
— 0000
e
.y 2000 o
— ks e
o 5] r:_ e

. o® .

~ 2 0 2 4 - 2 o 2

Validate2: error = 0.18

. .
3 3 L]
P O 2 Y .
' ' &% .
. , - %
“ .90
B . v RF
2 2 s Y
v g
5 .
.o . ,
" 4

1000 ——

Figure 3: Classifications of each of the data sets with
accuracy

3.3 Extending SVM to kernels
3.3.1

When extending the dual form SVM to work with
kernels, we can see how the output of the algorithm
changes as we vary C over {0.01,0.1,1.0,10.0,100.0}.

From Table 2, we observe that as C increases, the
geometric margin ﬁ decreases. This also makes intu-
itive sense because as C gets bigger, we penalize more
and more the points that are missclassified. Thus the
classifier brings the margins closer to the boundary in
order to have a lesser training error.

3.3.2

As seen in 2, the number of support vectors decreases
as C increases. This happens because as C increases,
the margin becomes tighter and thus a smaller amount
of points fall within the margin. (All the points within
the margin are support vectors).

C Linear Kernel Gaussian
Support Vectors [[|Jw]|? | Support Vectors | [Jw][?
0.01 75 0.54 400 2.34
0.1 20 1.5 109 8.88
1.0 4 3.14 36 14. 78
10.0 3 4.0 31 15.86
100.0 3 4.0 30 15.86

Table 2: ||w||* and of support vectors for varying C

3.3.3

Maximizing the geometric margin 1/||w|| would not
be an appropriate criterion for selecting C. In order to
maximize the margin, we would get a C of 0, and our
||w|] would be approaching 0, meaning that we don’t
gain much information about our data. This would
result into a very weak classifier.

An alternative criterion we could use in order to
select the value C would be cross-validation. By split-
ting our data into a training and a validation test, we
can try out several values of C. Then, based on those
empirical observations, we can choose the one that re-
sults in the best classification of the validation data
(i.e. lowest validation error).

Soft-Margin SVM with Pegasos

4.1 Implementing Pegasos

In the following problems, we implement the Pegasos
algorithm and answer the questions.

4.2 Testing regularization values

In Table 3, we observe that the margin increases as
A increases. This makes sense because as A increases
we have higher regularization and thus less overfitting.
The regularization parameter A penalizes ||w||, so as
A increases, ||w]|| should decrease. Thus, ﬁ increases,
so the margin gets wider.

A [1Y/l A | /]w]?
2-10 0.23 2-1 0.67
279 0.27 23 0.78
2-8 0.34 272 0.93
2-7 0.42 2-1 1.14
2-6 0.47 20 1.43
2-5 0.56 21 2.17

Table 3: Hw1||2 for varying A

4.3 Kernelizing Pegasos algorithm

As in the previous question, we have

h(z) = (w, ¢(x)) = Zaiyik(wmw)-

Hence we would expect that the solution to be sparse,
but most likely not as sparse as the linear. This hap-
pens because the gaussian model has more complex
features than the linear, so it is more likely to overfit.

4.4 Gaussian kernel classification

In Table 4.4, as well as in Figures 4a and 4b, we can
observe that the larger the v parameter, the tighter
the decision boundary. Thus, fewer and fewer points
are misclassified and the closer we get to overfitting.

Additionally, we can also see that the number of
support vectors increases as 7y increases.

oY 2—2 2—1 20 21 22
#sv | 30 30 | 29 | 38 | 58

Gaussian Kernel SVM

(a) Small v value

Gaussian Kernel SVM

(b) Large «y value

Figure 4: RBF for different values of v

Here we can tune the paramater 7 in order to re-
duce the training error arbitrarily. Thus we can get
better accuracy than in the previous section, but we
would also have a lot more overfitting.

